Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH.
نویسندگان
چکیده
Adenosine plays multiple roles in the efficient functioning of the heart by regulating coronary blood flow, cardiac pacemaking, and contractility. Previous studies have implicated the equilibrative nucleoside transporter family member equilibrative nucleoside transporter-1 (ENT1) in the regulation of cardiac adenosine levels. We report here that a second member of this family, ENT4, is also abundant in the heart, in particular in the plasma membranes of ventricular myocytes and vascular endothelial cells but, unlike ENT1, is virtually absent from the sinoatrial and atrioventricular nodes. Originally described as a monoamine/organic cation transporter, we found that both human and mouse ENT4 exhibited a novel, pH-dependent adenosine transport activity optimal at acidic pH (apparent K(m) values 0.78 and 0.13 mmol/L, respectively, at pH 5.5) and absent at pH 7.4. In contrast, serotonin transport by ENT4 was relatively insensitive to pH. ENT4-mediated nucleoside transport was adenosine selective, sodium independent and only weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. We hypothesize that ENT4, in addition to playing roles in cardiac serotonin transport, contributes to the regulation of extracellular adenosine concentrations, in particular under the acidotic conditions associated with ischemia.
منابع مشابه
Adenosine transport by plasma membrane monoamine transporter: reinvestigation and comparison with organic cations.
The plasma membrane monoamine transporter (PMAT) belongs to the equilibrative nucleoside transporter family (solute carrier 29) and was alternatively named equilibrative nucleoside transporter 4. Previous studies from our laboratory characterized PMAT as a polyspecific organic cation transporter that minimally interacts with nucleosides. Recently, PMAT-mediated uptake of adenosine (a purine nuc...
متن کاملNucleoside and nucleobase transporters of primary human cardiac microvascular endothelial cells: characterization of a novel nucleobase transporter.
Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (EN...
متن کاملCharacterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family.
Research on metabolism of nucleotides and their derivatives has gained increasing interest in the recent past. This includes de novo synthesis, analysis of salvage pathways, breakdown and transport of nucleotides, nucleosides and nucleobases. To perform a further step towards the analysis of nucleoside transport in Arabidopsis, we incubated leaf discs with various radioactively labelled nucleos...
متن کاملA purine-selective nucleobase/nucleoside transporter in PK15NTD cells.
Nucleoside and nucleobase transporters are important for salvage of purines and pyrimidines and for transport of their analog drugs into cells. However, the pathways for nucleobase translocation in mammalian cells are not well characterized. We identified an Na-independent purine-selective nucleobase/nucleoside transport system in the nucleoside transporter-deficient PK15NTD cells. This transpo...
متن کاملMolecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta.
Mammalian equilibrative nucleoside transporters are typically divided into two classes, es and ei, based on their sensitivity or resistance respectively to inhibition by nitrobenzylthioinosine (NBMPR). Previously, we have reported the isolation of a cDNA clone encoding a prototypic es-type transporter, hENT1 (human equilibrative nucleoside transporter 1), from human placenta. We now report the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 99 5 شماره
صفحات -
تاریخ انتشار 2006